Estimation of INAR(p) models using bootstrap
نویسندگان
چکیده
In this paper we investigate bootstrap techniques applied to the estimation of the thinning parameters in INAR(p) models. We propose a new bootstrap approach based on sieve bootstrap. The approach is then applied to the Yule-Walker estimator of the thinning parameters. Monte Carlo experiments are carried out to valuate the performance of bootstrap estimator and the superiority of our proposal is stated in terms of low bias and Mean Square Error (MSE). Finally, a real time series is analyzed.
منابع مشابه
Bootstrapping INAR Models
Integer-valued autoregressive (INAR) time series form a very useful class of processes suitable to model time series of counts. In the common formulation of Du and Li (1991, JTSA), INAR models of order p share the autocorrelation structure with classical autoregressive time series. This fact allows to estimate the INAR coefficients, e.g., by Yule-Walker estimators. However, contrary to the AR c...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملModelling Time Series of Counts: an Inar Approach
Abstract. Time series of counts arise when the interest lies on the number of certain events occurring during a specified time interval. Many of these data sets are characterized by low counts, asymmetric distributions, excess zeros, over dispersion, ruling out normal approximations. Several approaches and diversified models that explicitly account for the discreteness of the data have been con...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کامل